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This paper reconsiders formal expansion methods for the analysis of the nonlinear 
properties of a modal disturbance. A survey is given of the various types of expansions 
based on different assumptions, and their range and shortcomings are discussed. By 
introducing a well-defined amplitude, Watson’s expansion in a time-dependent 
amplitude is developed into a rational method for uniquely determining Landau 
constants of arbitrary order. Complementary to the common orthogonality condition 
for points at the neutral curve, an alternative definition of the Landau constants is 
given for points in the unstable domain. The method is not restricted to small 
amplification rates but is invalid in the stable domain. The method of Reynolds and 
Potter for a direct attack on equilibrium states is extended into a class of rational 
methods. The methods in this class agree to within a rearrangement of the infinite 
expansion series but differ in their respective range of validity. 

1. Introduction 
Analytical perturbation methods are familiar and powerful approximation methods 

for solving nonlinear equations. These techniques represent the solution f = f ( x ,  E )  by 
an expansion 

00 

f ( x , ~ )  = Z fm(x)Em =fo(x)+Efl(x)+ . . .  (1.1) 
m=o 

in terms of some parameter (or variable) c that  appears naturally or artificially 
in the problem. After finding f,,(x) as the solution of the equations for ~ = 0 ,  the 
functionsfm(x) are usually governed by a sequence of simpler linear equations, which 
can be solved successively. In  contrast to purely numerical approaches, the 
perturbation method provides the solution for some range of E rather than a single 
value of the parameter, and the series representation often enhances the insight into 
the analytical structure of the solution. 

Normally, the series solution (1.1) is truncated a t  rather low order in the small 
parameter E because the handling of the rapidly increasing number of terms is 
laborious and susceptible to  errors. This may give reliable results on tendencies of 
certain functions such as the gradient af/& close to E = 0. However, the utility of 
the truncated perturbation series for actually representing the true solution at some 
finite value of E cannot be assessed without at least rough information on the 
analytical properties of the solution and on the convergence of the series (1.1). Merely 
including higher-order terms may improve the approximation, but may on the other 
hand be useless if the series diverges in the relevant range of E .  Nevertheless, the 
information concealed in the higher-order terms can be profitable. Beyond the 
illustrative comparison of different approximations there are various more 
sophisticated techniques available (e.g. Shanks 1955 ; Gaunt & Guttmann 1974 ; Van 
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Dyke 1974) for extracting from these higher-order terms the necessary information 
on the analytical structure and recasting the series in some more suitable form. These 
techniques simply exploit the fact that the nature of the true solution is imprinted 
on the coefficients fm even if the series diverges or poorly converges. 

A first obvious yet not always satisfied requirement for these techniques is a 
rational approximation method, i.e. a consistent formal expansion procedure that can 
be carried on to arbitrary order. Secondly, this procedure must be prepared for 
automatic execution in order to  take advantage of the capability of computers to 
handle large data sets and to repeat correctly the involved induction process. In  this 
case, only a few terms need to  be formally checked by hand. The lengthy equations 
for higher-order terms never appear explicitly but are internally generated. Finally, 
the set-up of the internal equations needs to  be interlaced with suitable numerical 
methods for converting these into algebraic equations and for obtaining their solution 
which must keep step with the induction process. 

A long list of references on applications of straightforward extended perturbation 
series in fluid mechanics and a survey of results for a variety of problems attacked 
at Stanford University has been given by Van Dyke (1975). His paper also 
elucidates some computational aspects of series extension and gives useful advice for 
programming. For some prototype series, Van Dyke (1974) has also discussed how 
the range of applicability can be extended, or the accuracy of the results increased, 
by analysing the coefficients and then recasting the series in another form. After 
additional experience with other problems, Van Dyke (1978) states that  the three-step 
scheme of extension, analysis and improvement of perturbation series is ‘an 
attractive alternative to  finite difference computation, at least in simple problems ’ . 
The aim of the present investigation is to show that i t  may be also an attractive tool 
for the analysis of nonlinear stability of flows, which cannot be considered as a simple 
problem. This paper, however, concentrates only on the first basic requirement and 
considers the formal aspects of rational approximation methods for the most 
important classes of problems. 

The essential steps in the study of nonlinear processes in flow stability, such as 
growth and equilibration of normal modes, mode selection, wavenumber selection or 
secondary instability, were discussed in detail by Stuart (1971), Busse (1978) and 
others. These surveys also indicate that much of our present understanding of 
nonlinear effects relies on perturbation methods or other semi-analytical approxim- 
ations. Numerical analysis by directly solving the Navier-Stokes equations in- 
creasingly contributes in some specific cases like plane Poiseuille flow (Zahn et al. 1974 ; 
Herbert 1977,1978~~; Orszag & Kells 1980; Orszag & Patera 1981 ; Kleiser 1982). But 
even with advanced computers the systematic investigation of many important 
phenomena exceeds the limits of feasibility. Moreover, concerns persist about 
resolution of proper scales, numerical stability and the role of artificially introduced 
boundaries. The numerical experiments of Fasel (1974) clearly indicated that 
insufficient resolution in space or time may falsify the solution completely and i t  will 
certainly suppress possible relevant small-scale phenomena. Besides this, the basic 
mechanisms a t  work are often difficult to retrieve from the mass of numerical data 
obtained for a few points in parameter space. 

On the other hand, rational perturbation methods are as yet only available for a 
special class of nonlinear stability problems that are related to the equilibrium states 
as they are observed as steady Taylor vortices or convection cells. For a wide class 
of basically unsteady problems most relevant to parallel flows, the methods currently 
in use suffer from unintelligible restrictions and provide no basis for a rational 
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FIGURE 1. Bifurcation diagram for supercritical stability at wavenumber a, and illustration of (T) 
parameter expansion, (11) expansion in the amplitude A(t) ,  and (111) method of false problems. 
The range of validity may be different for each method. 

approximation. Although asymptotic theories turned out t,o be very fertile a t  lowest 
order (Stewartson 1975), they have undergone little further development towards a 
quantitative analysis of nonlinear phenomena. 

Historically, a variety of perturbation methods for the analysis of nonlinear 
stability has been independently developed in the fields of thermal convection and 
parallel flows. The only common feature is the use of some solution of the linear 
stability problem as a zeroth approximation, which is automatically selected by the 
choice of an expansion parameter appropriate for the problem under consideration. 

I n  thermal convection, interest is primarily centred on the steady equilibrium 
states bifurcating from the basic state of resting fluid with pure heat conduction. 
Therefore it is natural to start from the steady equations of motion and to use, for 
a given wavenumber a,, the solution a t  the point a,, R, of the neutral curve (usually 
the critical point a,, R,) as zeroth approximation. The parameter E then measures 
the distance from this point in terms of the equilibrium amplitude A ,  or the difference 
R- R, in the relevant dimensionless parameter R, here the Rayleigh number. Given 
the bifurcation diagram a t  a = a, in figure 1, this parameter expansion follows the 
arrow labelled I along the curve AE(R-R,) as E increases. Expansions of this type 
have been introduced by Gorkov (1957) and Malkus & Veronis (1958). For two- 
dimensional convection between stress-free boundaries, Malkus & Veronis carried the 
analysis to  sixth order, Kuo & Platzman (1961) with a modified, more elegant 
formulation to eighth order. This is an exceptional case, since the solution can be 
readily expressed by trigonometric functions, and it seems to be the only case where 
a clear indication of the restricted convergence domain is available. This restriction 
was partly overcome by Kuo (1961), who obtained a more rapidly converging series 
by expanding in a slightly different parameter. 

Meanwhile, parameter expansions about a neutral solution were successfully 
applied for studies on finite-amplitude Taylor vortices in supercritical circular 
Couette flow (Reynolds & Potter 1967a; Kirchggssner & Sorger 1969). The method 
was also extended to  the construction of time-periodic solutions bifurcating from 
plane Poiseuille flow (Joseph & Sattinger 1972; Chen & Joseph 1973). With the 
bifurcation diagram a t  a, shown in figure 2, the parameter expansion along arrow 
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I provides the threshold amplitudes for subcritical instability. A clear advantage of 
these parameter expansions is to provide a t  once the equilibrium solution for some 
range of R- R, instead of a single value. 

Obviously, these otherwise successful methods are by nature not applicable to flows 
like pipe flow, which seem to be stable according to linear stability theory and exhibit 
no bifurcation point a t  finite R. Moreover, they are not applicable to processes 
involving the nonlinear growth or decay of disturbances. From a different point of 
view, one can also study the steady equilibrium state in figure 1 a t  some supercritical 
point a,, R, > R, as i t  originates asymptotically from nonlinear growth of an 
unstable normal mode. For this second type of expansion along arrow I1 it is natural 
to use a coordinate expansion in the time-dependent amplitude A( t ) .  The appropriate 
zeroth approximation for A + 0 is then given by the solution of the linear stability 
problem for the point a,, R,. Studies on unsteady processes are considered most 
important for unstable flows like plane Poiseuille flow where disturbance growth leads 
to breakdown into the turbulent motion. The aim is then to  trace the nonlinear 
evolution of a normal mode a t  a,, R, > R, for some finite time,t until other physical 
phenomena occur or the amplitude exceeds the range of validity, as indicated by 
arrow I1 in figure 2. 

This second approach to nonlinear stability problems was suggested by Stuart 
(1960) for plane Poiseuille flow. Although an expansion in A( t )  was independently 
introduced by Palm (1960) in thermal convection, i t  was Stuart's work that opened 
the way for the development of formal methods for the analysis of modal disturbances 
by Watson (1960), Eckhaus (1965), Itoh (1974, 1977a) and others, as well as for a 
whole series of applications with fundamental results, e.g. Davey (1962) for circular 
Couette flow and Reynolds & Potter (1967b), Pekeris & Shkoller (1967) for plane 

t Although normal modes can be considered as growing spatially as well, we restrict our attention 
to the classical case of temporal growth. Most of our arguments need only slight modification for 
the other case. 
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Poiseuille flow. One of the major achievements of these methods is the derivation of 
the Landau equation 

1 dA 
A dt 

= a o + a , A 2 + .  . . = a ( A ) ,  _ _  

for the nonlinear amplification rate a as a function of the amplitude A (we consider 
all quantities in (1.2) as real). This equation is considered as representing the essence 
of the nonlinear disturbance behaviour. Consequently, the spatial structure of the 
disturbance can be disregarded and the analysis aims at determining the Landau 
constants a,, . . . in the series (1.2), whereas a, is the linear amplification rate. 

It is obvious that this class of asymptotic theories can be expected to be valid only 
for sufficiently small amplitudes A ( t ) .  In  spite of modifications and extensions, 
however, the range of applicability is restricted for other reasons. A problem of 
non-uniqueness occurs in determining the higher-order Landau constants beyond a,, 
restricting most of the applications to  the lowest-order approximation. Eagles (1971) 
found by rational arguments an additional condition to select a specific value of a2, 
but a generic procedure was not revealed. Even a t  lowest order, application of the 
methods is restricted to the vicinity of the neutral curve, laol << 1. As a consequence, 
various possibly valuable quantitative results for a, =I= 0, e.g. those of Eagles (1971), 
are subject to reservations. Important phenomena a t  small amplitude such as the 
interaction of different modes (Stuart 1962) are inaccessible to these techniques, since 
not all Landau constants in the coupled amplitude equations can be determined and 
the condition on the amplification rates cannot be satisfied. Moreover, Davey & 
Nguyen (1971) found that the expansion in a single amplitude A ( t )  is invalid in the 
stable domain, a, < 0, owing to possible resonance with mean-flow modes. 

For a direct attack on equilibrium states, a ‘method of false problems’ was first 
suggested by Reynolds & Potter (1967 b ) .  These methods rest on an expansion in A ( t ) ,  
but the equilibrium condition d A / d t  = 0 for A = A, is exploited in the derivation 
of the equations. Hence non-physical solutions of false problems are obtained for 
A + A,. For sufficiently small equilibrium amplitudes, the methods can be applied 
for arbitrary points in the stable or unstable domain, as indicated by the broken 
arrows labeled 111 in figures 1 and 2. It is an obvious disadvantage of these methods 
to provide the equilibrium solution only for a single point, whereas expansions of type 
I provide this solution for some range of the perturbation parameter. However, 
methods of false problems are the only ones that can be applied to  problems without 
a neutral curve. 

The results of Itoh (1977 b )  for the centre mode in pipe flow indicate that Reynolds 
& Potter’s method can be invalidated by resonance with the harmonic equations. Itoh 
( 1  977 a )  suggested a modified method for determining a,  similar to that used by 
Ellingsen, Gjevik & Palm (1970). The relation between Reynolds & Potter’s method 
and Itoh’s method was discussed by Davey (1978), who pointed out that  the methods 
differ only by a rearrangement of the terms of an infinite series. Davey also 
emphasized the importance of highcr-order terms for conclusive results. These 
higher-order terms, however, suffer from the same non-uniqueness as in Watson’s 
method. The introduction of arbitrary conditions (Coffee 1977) is inappropriate in 
overcoming this problem and leaves the values of the Landau constants inconclusive. 
Herbert (1978b, 1980) introduced a well-defined amplitude in Reynolds & Potter’s 
method and found all higher-order terms uniquely determined. Landau constants up 
to a, were calculated for equilibrium states in plane Poiseuille flow in order to shed 
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some light on the convergence of Landau’s series. As a side result, the use of the same 
amplitude definition with Watson’s method provided conditions for determining thc 
constants irrespective of the vicinity of the neutral curve. 

The aim of the present paper is primarily to present in $ 2  a consistent formulation 
of a rational expansion in the time-dependent amplitude A ( t ) ,  with special emphasis 
on the fundamental assumptions and the validity of the expansion series. We restrict 
our discussion to the simplest case of a single mode, although our alternative 
definition of the Landau constant provides a new rational basis for studies on 
interacting modes. We also disregard the interesting field of wave pavkets. In  $ 3  we 
compare our formal results with those of previous work and shed some light on the 
controversial discussion of amplitude expansions. I n  94 we suggest a class of rational 
methods of false problems which contains the methods of Reynolds & Potter and ltoh 
as special cases. 

2. Expansion formalism for growing disturbances 
2.1. Fourier analysis of the basic equations 

We consider the two-dimensional flow of an incompressible fluid of viscosity Y and 
density p between parallel planes of distance 2h, which is driven by a constant (mean) 
pressure gradient. The Navier-Stokes equations may be written in the form 

au au au ap  i 
- + ~ - + w - - - =  --+-A u, at ax ay ax R 

au a0 

ax ay 
-+- = 0, 

where A = a2 /ax2  + d2/ay2, x denotes the direction of the pressure gradient parallel 
to the planes, y the distance normal to them measured from the channel centre, u,  
w the corresponding velocity components, p the pressure, t the time and R the 
Reynolds number. All quantities have been made non-dimensional with respect to 
the channel half-width h ,  the mid-channel velocity U, in steady flow, and the 
reference pressure pUi .  The Reynolds number is defined by R = U,h/v., The 
boundary conditions require that both velocity components vanish a t  the walls : 

u ( x ,  y, t )  = w(z, y, t )  = 0 a t  y = f 1 .  

The basic laminar flow is given by the plane Poiseuille flow 

2 
R U(y) = 1 -y2, v = 0, P = --x, 

(2.4) 

which solves the steady version of (2.1)-(2.4) for all Reynolds numbers. 

function @ such that 
To satisfy the continuity equation (2.3) we express the velocity field by a stream 

(2.6) 
allr 

a Y  ’ ax u = -  v=-- 

and the Navier-Stokes equations become 
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The stream function $(x ,  y ,  t )  of an unsteady disturbance added to the basic flow is 
then governed by the equation 

with boundary conditions 

I n  the linear stability theory, the right-hand side of (2.8) is set equal to zero, and 
a solution of (2.8) and (2.9) is found in the form 

+(x, y ,  t )  = eaot+lo(y) ei(az-wot), (2.10) 

where a is the wavenumber, a, the amplification rate and w, the frequency. For given 
R and a,  A, = a,-iw, is a complex eigenvalue of the Orr-Sommerfeld problem and 
q410(y) the related eigenfunetion subject to some normalization. For plane Yoiseuille 
flow, interest is centred on the symmetric eigenfunction related to the principal 
eigenvalue A,. I n  this case, the channel centre yo = 0 is a suitable location for the 
normalization 

q4lO(YO) = 1 a t  Yo = 0, (2.11) 

which fixes amplitude and phase of the wave (2.10). The regions of stability (a, < 0) 
and instability (a ,  > 0) in the (R, a)-plane are separated by the neutral curve 
a,(a, R) = 0. 

If nonlinear terms are taken into account, the disturbance reacts with itself, with 
its complex conjugate and with the mean flow - which results in the generation of 
harmonics, a mean-flow distortion and a distortion of the fundamental, respectively. 
Moreover, the frequency and amplification rate will change with the finite size of the 
disturbance. Therefore it seems natural to  represent the nonlinear disturbance as the 
Fourier series 

(2.12) 

With real y(t)  any growth of the disturbance is absorbed into the Fourier coefficients 
$n. For a real solution, 

$-n(Yj t )  = @n(Y, t )  (2.13) 

must be satisfied, where the tilde denotes the complex conjugate. By using the series 
(2.12) we restrict the class of solutions to those that are periodic in x with wavenumber 
a. Moreover, we imply the strong assumption that the nonlinear solution is uniquely 
determined by the fundamental component. The validity of this assumption remains 
to be discussed. Substituting 6 according to (2.12) into (2.8) and (2.9) and separating 
out the coefficients of like exponentials exp ( i d )  provides an infinite set of equations 
and boundary conditions for the Fourier components 9, : 

& = n $ , = ~  aY a t  y = f l ,  (2.15) 
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where the operators L,, M,, N are 

It is obvious from (2.15) for n = 0 that  only two boundary conditions are available 
for the solution t,h0 of the fourth-order differential equation (2.14). The first degree 
of freedom is due to the fact that  the stream function is only determined to within 
an additive constant that  is irrelevant for the physical solution in terms of the 
velocity components (2.6). Integrating the equation for $o once over y introduces a 
time-dependent constant of integration. By comparison with the mean of (2.1) i t  is 
easily seen that this second degree of freedom is equivalent to a change with time 
of the mean-pressure gradient, where the mean is taken with respect to x over one 
wavelength 2nla. We set this constant of integration equal to zero according to our 
assumption that the mean-pressure gradient should be constant. The flow rate 
through the channel then will change with the size of the disturbance. Therefore the 
assumption of a constant mean-pressure gradient is valid only for temporally growing 
disturbances. As an alternative that is valid for both, temporal or spatial growth, 
one could determine the constant of integration such that a constant mass flux 
through the channel is maintained, with an associated variation of the mean-pressure 
gradient with the size of the disturbance. In  either way we obtain an equation for 
unique determination of uo = a@o/ay. 

2.2. Expansion in the amplitude 
The system (2.14) of coupled nonlinear partial differential equations is very difficult 
to solve, and we therefore seek a solution by a perturbation method expanding about 
the solution (2.10) of the linear stability problem at fixed R and a. Since no small 
parameter appears naturally in this problem, we introduce artificially some suitable 
measure for the size of the disturbance stream function $. According to  our 
assumption that $ is completely determined by the fundamental $l we measure this 
size by the amplitude A ( t )  of the fundamental. The initially exponential growth of 
A ( t )  according to the linear theory will be modified as nonlinearity becomes significant 
and probably A(t )  approaches an equilibrium value. Even if A( t )  is bounded, however, 
it is questionable whether the amplitudes a t  large times will be in the range of validity 
of the perturbation expansion. Therefore, we restrict our attention to finite but 
sufficiently small amplitudes, which may be reached a t  some finite time. 

The definition of the amplitude as an unambiguous measure for the size of the 
fundamental is crucial for the expansion procedure. Formally, the fundamental can 

(2.16) 
be written as 

Since we require that A(t )  comprehends any linear or nonlinear variation in the size 
of the size of the function # , ( y , t )  must be constant, independent of time. The 
problem of measuring the size of # , ( y , t )  bears similar arbitrariness as that of 
normalizing the eigenfunction q51(y) in (2.10). I n  a mathematically rigorous manner, 
some norm could be chosen, e.g. the maximum norm or a norm based on a scalar 

$l(Y, t )  = A ( Y ,  4.  
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product involving an integral across the channel (Chen & Joseph 1973). For 
computational simplicity, however, the size is usually measured at some suitable fixed 
y-position as in (2.1 1 ) .  For the principal eigenmode in plane Poiseuille flow it happens 
that I$lo(y)I assumes a maximum a t  the channel centre yo  = 0. For $1, or qb1, this 
property can be expected only for sufficiently small amplitudes. Strictly speaking, 
strong nonlinear distortion could result in $l vanishing at yo without being zero 
everywhere across the channel, and hence could lead to a failure of the local measure. 
Nevertheless, we adopt a local measure a t  the channel centre for an easier comparison 
with previous work. Introduction of some other measure will not affect the essence 
of our formal expansion. 

For the nonlinear solution associated with the symmetric principal eigenmode in 
plane Poiseuille flow we define the (real) amplitude A( t )  by 

A @ )  = I $ l ( Y O ,  t ) l ,  Yo = 0. (2.17) 

From (2.16) we obtain J$,(yo, t)l = 1 .  I n  order to fix the as-yet arbitrary phase of the 

(2.18) 
disturbance we set 

A ( y o , t )  = 1 ,  yo = 0. 

As the amplitude tends to zero, the O ( A )  terms of the nonlinear solution must 
represent the solution (2.10) of the linear stability problem. Hence a t  this order we 

(2.19) 

while the forced components $n,  n =# 1 ,  tend to zero more rapidly. 
From substituting (2.16) into the forcing terms on the right-hand side of (2.14) i t  

is obvious that the leading term of $2 is O(A2)  and is produced by the first sum. By 
induction, this first sum generates all higher harmonics $n that are O(An) ,  but it does 
not contribute to the leading term of $o. Complying with (2.13), these estimates 
suggest that we seek a solution in the form 

$ n ( Y ,  t )  = Alnl $n(Yj t ) ,  (2.20) 

where $n = 0(1), n =t= 0, and $o = O(A2)  as A + 0. The exceptional role of $o is due 
to the fact that the O( 1 )  terms of the total stream function $ represent the basic flow 
which is split off from G. The property (2.20) of the $n to  contain no terms of an 
order smaller than O(An)  brings about the desired decoupling of the nonlinear 
equations. Substituting (2.20) into (2.14) and (2.15) and equating like powers of A ( t )  
we obtain an infinite set of equations for the $ n :  

{Ln- (L+nh)Mn}$n  = Fn, (2.21) 

n 00 

u=o u- 1 
Fn = x N $ u ,  $n-ul+ x A2”{N1$-u, @n+ul + W $ n + u ,  $-u113 

where 

(2.22) 

Since all $n are either 0(1) or O(A2)  as A + 0, the right-hand side of (2.21) can 
generate only higher-order terms in ascending powers of A2.  Hence the Poinear6 
stretching of the eigenvalue h can be carried out in terms of A2 rather than A .  In  
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this way, there is no need for first introducing odd powers of A and ultimately finding 
their coefficients equal to  zero. It is consistent with (2.21) and (2.22) to seek a solution 
of the form 

(2.23) 
m=o 

A = C W AmAZm, A, = a m - i W m .  (2.24) 
m-0 

Substituting into (2.21) and equating like powers of A 2 ,  we obtain 

m 

n m  m m-v 

where summations from 1 to m are omitted when m = 0. We retain the notation 
for the operators and understand that a/ay is replaced by d l d y  when applied to the 
functions $,,(y).  The boundary conditions on $nm are 

a t  y = f l ,  (2.26) 

with the two degrees of freedom for $om fixed as earlier discussed. I n  addition we have 
from (2.18) the infinite set of conditions 

$lo(~o) = 1 ,  $lm(Yo)  = O ,  m ’0 at YO = O .  (2.27) 

We turn now to show that the set of equations (2.25)-(2.27) determines uniquely the 
complex Landau constants Am and functions $,,, and hence the complete nonlinear 
solution if the homogeneous equations associated with (2.25) subject to the conditions 
(2.26) admit no other eigensolutions except $lo. 

2.3. Method of solution 
We notice that $ n ,  is related to the O(An+2m) terms of the complete solution $, and 
solve the set of equations in the sequence of ascending values of 1 = n + 2m. For 1 = 0 
we have the basic flow (2.5) and $,, = 0. For 1 = 1 we must solve the Orr-Sommerfeld 
problem 

{ L ~ - A o M l ~ $ l o  = 0, $;, = $lo = 0 a t  y = f l ,  (2.28) 

with $lo(0) = 1 for given values of R and a, where the prime denotes dldy. This 
provides the principal eigenvalue A, = a,-iw, and the eigenfunction for the 
solution (2.10) of the linear stability problem. Following Stuart (1960), we also 
introduce the adjoint eigenfunction @ ( y )  related to A, that  satisfies the system adjoint 
to (2.28). From orthogonality relations (Eckhaus 1965) we obtain 

(2.29) 

where the value of c depends on the normalization of @. For any sufficiently smooth 
function x that  satisfies x‘ = x = 0 at y = & 1 ,  it can be shown (Reynolds & Potter 
1967 b)  that  

(2.30) 
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Before we turn to the next step, 1 = 2 ,  of evaluating $,, and q520, we consider the 
general problem of solving (2 .25)  for n = 0, m > 0. Integrating once the equations 
for $om over y, introducing uom = d$,,/dy, and applying the condition that the 
mean-pressure gradient should be constant, we obtain after some rearrangement 

(2.31 a )  

(2.31 b )  

uom = 0 a t  y = + 1 .  (2.31 c )  

As has been pointed out by Davey & Nguyen (1971) in a similar context, the 
associated homogeneous problem 

d m m - v  

Go, = Z Z ivaR-{#-vm $:m-v-p - $ v m - v - p $ L v J ,  
v = l p = O  dy 

f = O  a t  y = f l ,  (2.32) 

admits eigensolutions when a, = - ( k ~ ) ~ / 8 m R ,  12 = 1,2 ,  . . . . The occurrence of such 
free modes violates our assumption that the solution is purely forced by the 
fundamental, and invalidates the expansion in terms of a single amplitude. Even if 
the eigenvalues are not exactly met, ill-conditioned problems arise from solving (2.31) 
in their neighbourhood. Therefore our expansion procedure can be expected to  
provide rational approximations only if a, 2 0, i.e. for neutral or unstable normal 
modes. This restricts the applicability to the range of wavenumbers a, d a d a2, 
where a,@) and a2(R) are the points a t  the lower and upper branch respectively of 
the neutral curve for R > R, and al = a2 = a, a t  R = R,. I n  this range, the 
evaluation of uOm (and hence $,,) is a Straightforward matter, since the right-hand 
side of (2.31) is a known function of y a t  the stage when this equation is to be solved. 
I n  particular, the evaluation of uol and $ol poses no problem. 

For a, 2 0 it  is unlikely that the expansion procedure will fail owing to eigen- 
solutions of the homogeneous problems 

{L,-(2ma,+nAO)M,}f=0, f ' = f = O  at  y = + l ,  (2.33) 

associated with (2.25) for the harmonic contributions $nm,  n > 0. Since eigenvalues 
with a real part (2m+n)ao > 0 do not occur for na > a2(R), the system (2.32), n > 1 ,  
admits no eigensolutions for the range of Reynolds numbers as high as R = lo5. 
Disregarding this, it would be an unlikely contingency? if real and imaginary parts 
of 2ma,+nA, agreed with the principal eigenvalue for R, na. This situation would 
be easier to meet with a, < 0 owing to the infinite sequence of decaying eigenmodes. 
For n = 1 ,  m > 0 and a, > 0 the system (2.33) admits no eigensolutions, since, by 
definition of the principal eigenvalue, there is no eigenvalue with an amplification 
rate (2m+ 1 )  a, > a,. The case a, = 0 does not invalidate the expansion, as we 
shall see. 

With this background, the evaluation of Qtz0 and q530 in the next step is a 
straightforward matter. For 1 = 3 we are also faced with determining the distortion 
$11 of the fundamental together with the complex Landau constant A, from the 
equations 

{ & - ( 2 a 0 + h , ) M , ) $ ~ ~  = ~ 1 ~ 1 $ 1 , + ~ 1 1 ,  q511 = $,, = 0 at  y = f l ,  (2.34a, b )  

t Note t h a t  this coincidence can be detected during the numerical evaluation. 
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with the additional condition (2.27) for m = 1 

$,,(Yo) = 0, Yo = 0. (2.35) 

We consider first the case a, = 0, which leads to 

{ L l - A 0 M 1 } $ , ,  = AlM1$,,+~,,  $il = $,, = 0 a t  y = + 1 .  (2.36) 

The associated homogeneous problem is solvable and identical with the Orr- 
Sommerfeld problem (2.28). Moreover, $,, satisfies the boundary conditions required 
for the function x in (2.30). By multiplying (2.36) with the adjoint eigenfunction CD, 
integrating from y = - 1 toy  = 1, and applying (2.30) for the left-hand side, we obtain 

J-1 

Hence the value of the Landau constant A, is given by 

1 

A 1 -  ---'I @F,,dy for a, = 0, 
c -1 

(2.37) 

(2.38) 

where c is the non-zero constant defined by (2.29). This is the classical way to 
determine the Landau constant from the orthogonality condition. With known A,, 
the solution of (2.36) can be found to within an arbitrary multiple of the solution 
$lo of the homogeneous problem (2.28). Since $lo(yo) = 1 for yo = 0, a unique solution 
$ll(y) is provided by condition (2.35). 

For a, =l 0, (2.34) could be solved for arbitrary values of A,, as observed by Watson 
(1960). However, with the condition (2.35) a unique solution is selected and A, 
uniquely determined. In  order to show this, we write = A,x,+x,, and obtain 
from (2.34) 

{L , - (2a ,+A0)M,}~ ,  = M,$,,, x; =x, = 0 a t  y = + I ,  (2.39) 

{I,1-(2a,+A,)M,}~, = F,,, x; = x1 = 0 at y = ki. (2.40) 

Both of these problems are uniquely solvable, and i t  is easy to  verify that 
- 2 a 0 ~ o  = $10. Thus 

(2.41) 

In  order to satisfy (2.35) with q510(yo) = 1 according to (2.27), the constant A, must 

A, = 2a,X1(yo), yo = 0 for a, * 0. (2.42) be 

Substitution into (2.41) provides 

4ll(Y) = X1(Y)-X1(Yo) $lO(Y). (2.43) 

In  this way, we obtained two different definitions of the Landau constant A,. We note 
that the derivation of (2.42) neither exploits the orthogonality condition (2.29) nor 
requires knowledge of the adjoint eigenfunction. A dissenting statement in Uavey 
(1978) was subsequently revised by Davey (private communication). It remains 
to be shown that A,  = A,(a,) defined by (2.42) tends to the value A, = A: according to 
(2.38) as a, +. 0. 

For small a, + 0 we follow Watson (1960) and expand xl(y) in powers of 2a,. From 
(2.41) and (2.35) it is obvious that x1 = O(a;l) as a, + 0. Therefore we set 

(2.44) 
1 x1 = - X ; ~ + X ? + ~ ~ , X : + .  . . , 

201, 
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and obtain from (2.40) by comparison of like powers of 2a, the equations 

{L,-h,Ml}X;l = 0,  (2.45) 

(2.46) 

The functions xcl, x!, . . . satisfy separately the same boundary condition as x,. The 
solution of (2.45) is x;l = A,$,,, with an as-yet arbitrary constant A1. By multiplying 
(2.46) with 0 and integrating from y = - 1 to y = 1 ,  we obtain with (2.29) and (2.30) 

{ L , - h , M , } ~ ~  = M,X;1+q1,. . .. 

A, = - A s  0&dy for a, + 0 ,  a,small. (2.47) 
c -1 

This is formally identical with (2.38), but note that c ,  0 and E;, in (2.47) may differ 
by terms O(a,) from the values at the neutral curve taken in (2.38). Therefore 

A, = A: + O(a,) as a, -P 0. (2.48) 

In order to  satisfy (2.35) we substitute (2.44) into (2.41) and obtain 

q5ll(YO) = I&- 4) q 5 l O ( Y O )  + 2a,x!(y,) + . . . I  = 0, (2.49) 

A, = A1 +O(a,) = A:+ O(a,) as a, 0. (2.50) 

2a0 
hence 

These results show that the constant A, as well as the function q5,, pass smoothly 
through neutral points. 

With the determination ofh, and q51m from (2.34), (2.35), the step I = 3 is complete. 
At closer analysis, the differential equations encountered a t  higher order are of either 
one of the types already discussed in the previous steps. I n  particular, we find for 
n = 1, m > 1 the equations 

{&-(2mao+Ao) M A  q5im = h m M i q 5 i o + H i m ,  (2.51 a )  

HIm = X [2(m-~u)a,+hplMlq5,m-,+E;, ,  (2.51 b )  

with the usual boundary conditions and known functions H,,(y). With the same 
arguments as for m = 1 we obtain now for points a t  the neutral curve 

m-1 

p = l  

m =-- i6Hlmdy for a, = 0,  m > 0, (2.52) 

which contains (2.38) since H , ,  = Fll. With these values of A, and the additional 
conditions (2.27) the equations (2.51) can be uniquely solved for q51m, m > 0, as a, = 0. 
Otherwise we proceed as form = 1 and obtain instead of (2.42) and (2.43) the solution 

Am = 2ma,~m(yo),  yo = 0 for a, =+= 0, m > 0,  (2.53) 

A m  = Xm(Y)-Xm(Yo) q 5 1 0 ( ~ ) ,  (2.54) 

where in analogy to (2.40) 

{ L , - ( 2 m a , + h , ) M , ) ~ ~  = H,,, xh = xm = 0 at y = 21. (2.55) 

I n  this way, the Landau constants Am and functions q5nm(y) are uniquely determined 
up to arbitrary order. 

Hence our expansion in the time-dependent amplitude A( t )  provides a rational 
approximation method for studying the nonlinear growth of disturbances in a large 
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range of Reynolds numbers. The assumption that the nonlinear solution is completely 
determined by the fundamental component is satisfied for a, 2 0 as long as, at given 
R and a, the harmonic points R and na, n > 1 ,  are in the stable domain. For plane 
Poiseuille flow this condition is always satisfied for Reynolds numbers as high as 
R = lo5. The perturbation series provides the solution (2.12) of the nonlinear problem 
(2.14) and (2.15) for amplitudes A(t )  within the convergence domain of the pertur- 
bation series. It also contributes to  the determination of equilibrium amplitudes A ,  
within this domain.? 

We suggest that the invalidity of the expansion about the basic flow for points R, 
a in the stable domain has its origin in the ill-posedness of the problem under 
consideration. Such an expansion would be equivalent to  an attempt to trace the 
history back to the non-unique initial conditions, which led asymptotically to the 
small neighbourhood of the basic flow. The non-uniqueness manifests itself in the 
existence of numerable sets of decaying eigenfunctions for R, na, n 2 0. On the 
contrary, the existence of only a single growing mode guarantees that the nonlinear 
solution emerges from the neighbourhood of the basic flow in a well-defined way. 

A final remark on an alternative definition of the amplitude seems to  be in order. 
Starting from the L, norm but avoiding nonlinearity in $1, the size of the 
fundamental can be measured by 

4) = JY1 $l0(Y) $l(Y, t )  dY, 

and one obtains from (2.16) 

(2.56) 

(2.57) 

Introducing (2.23) for #1 and comparing in powers of A2 provides 

leaving the phase of yet to be fixed. Hence, with the definition (2.56) of the 
amplitude, the functions q51, must be orthogonal to the eigenfunction #lo of the linear 
problem. It is a straightforward matter to  adapt our method of solution to the 
modified conditions and to verify that the Landau constants A, and functions q5nm 
are still uniquely determined. We note, however, that changing the definition of ,the 
amplitude may well affect the range of validity of the series expansion. 

3. Comparison with previous work 
The expansion formalism in $ 2  is distinguished from previous expansions in A(t )  

by the definition of the amplitude and, as consequences, the uniqueness in determining 
the Landau constants A, and functions q51m(y) for a, 2 0 and a new way of 
determining the constants A, for a, > 0. 

Most of the previous work on expansions in the time-dependent amplitude, 
including that of Stuart (1960) and Watson (1960), based the definition of the 
amplitude solely on the asymptotic behaviour of the fundamental : 

$l(Y,t) -+ 4) q 5 l O ( Y )  as A -+ 0. (3.1) 

t A successful application to equilibrium states of Taylor vortices in circular Couette flow has 
been recently reported (Herbert 1981). 
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By comparison with (2.16) and (2.23) for n = 1 ,  this definition can be written as 

$ l ( Y > t )  = 4) (q5,,(Y)+O(A2)),  (3.2) 

with normalized according to (2.11). The definition (3.2) of A(t)  agrees with (2.16) 
and (2.18) in the leading term, but differs by neglecting higher-order terms. With (3.2), 
a change in the size of the fundamental can be either accounted for by a change in 
A ( t )  or by a contribution that is concealed in the O ( A 2 )  terms. As a consequence. the 
conditions (2.27) on the q51m, m > 0, are lost, which are essential for the construction 
of a unique solution. We fully confirm Eagles’ (1971) conclusion that the ‘lack of 
uniqueness in the representation of the physical system arises from a certain lack of 
precision in the definition’ of the amplitude according to (3.2). We also note that 
Landau’s amplitude equation 

(3.3) 

cannot be considered as a key equation for the discussion of nonlinear disturbance 
behaviour if changes in the disturbance size are hidden in the functions @%,. 

The theory given by Stuart (1960) concentrated only on the leading terms of the 
expansion in the neighbourhood of the critical point R,,a, in order to decide on 
subcritical instability or supercritical stability of the basic flow. Stuart explicitly 
states that  ‘no attempt has been made to  develop a perturbation series’. Under these 
conditions it is sufficient to calculate A ,  for a, = 0 from (2.38) and to  show by (2.48) 
that the first Landau constant is a continuous function of a, in the vicinity of a, = 0. 
The derivation of (2.38) and (2.48) makes no use of (2.35), and therefore the weak 
definition (3.2) of the amplitude is sufficient to achieve the goals of Stuart’s analysis. 

The deficiency of the amplitude definition turned up in Watson’s (1960) attempt 
to develop a valid perturbation expansion of the complete solution of the Navier- 
Stokes equations. Although it is not clear whether his attempt was from the outset 
restricted to the vicinity of the neutral curve, the Landau constants Am can be 
arbitrarily chosen unless mlaol is sufficiently small. In  fact, with the conditions (2.27) 
for m > 0 missing, (2.34) and (2.51) can be solved for arbitrary A, if a, > 0. It is 
obvious from equations like (2.41) that the choice of a particular value for A, fixes 
the contribution of q510(y) to  q51m(y), and hence the value of q51m(yo) a t  the channel 
centre. This indicates clearly how the information on the size of the fundamental can 
be redistributed between the amplitude equation (3.3) and the function $l (yo ,  t ) .  

When a, --f 0 the problem of solving (2.34) and (2.51) is ill-conditioned. For a, = 0, 
the constant A, is uniquely determined by the orthogonality condition (2.38). 
Formally similar conditions (2.52) for A,, m > 1, can be derived, but the q51m, m > 0, 
can be found only to within an arbitrary multiple of Therefore the A, form > 1 
arc non-unique. Watson remarks that this arbitrariness corresponds to  the 
arbitrariness with which the series may be arranged. The arrangement of the infinite 
series may be crucial for the convergence properties, but should be irrelevant for 
representing the physical solution uniquely. I n  applications, however, only a finite 
number of terms is known and the rearrangement is impracticable. Hence, a unique 
physical solution cannot be obtained a t  any finite order of truncation. 

In the neighbourhood mlaOl < 1 of the neutral curve, Watson introduced an 
expansion of the in the small amplification rate a, and extended the range of 
applicability of the orthogonality condition by reasons of steadiness. His definition 
of the first Landau constant for a, $; 0 agrees with A, given by (2.47). We have shown 
in (2.50) that A1 differs from the exact value A, by terms O(ao).  Thus the Landau 
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constant based on the orthogonality condition becomes increasingly inaccurate with 
increasing amplification rate. Since the order estimate conceals any quantitative 
information on the deviation A, - I , ,  the results of Watson’s method for a, + 0 cannot 
be considered fully conclusive. This applies, for instance, to the results of Pekeris & 
Shkoller (1967) for plane Poiseuille flow or to those of Eagles (1971) for the 
Taylor-Couette problem. I n  particular, the secondary instability studied by Eagles 
occurs a t  definite supercritical Reynolds numbers, with values of a, greater than 
unity. We note that the inaccuracy of A1 is not directly related to the weakness of 
the amplitude definition ; it originates from using the orthogonality condition with 
(2.34) for a, + 0 although the associated homogeneous problem is not solvable. The 
invalidity of Watson’s method for a, < 0 has been discovered by Davcy & Nguyen 
(1971) in an attempt to utilize this method for a study on finite-disturbance behaviour 
in pipe flow, where always a* < 0. Itoh ( 1 9 7 7 ~ )  concluded that the restriction of 
Watson’s approach to the vicinity of the neutral curve originates from the assumption 
that the nonlinear solution is uniquely determined by the fundamental component. 
This holds true for a, < 0 but not for a, > 0. 

Eckhaus’ ( 1965) technique of expanding the nonlinear solution in terms of 
eigenfunctions of the linear problem with time-dependent coefficients is not directly 
comparable to our amplitude expansion. With only one coefficient taken into account, 
the first two terms of the Landau series (3.3) can be obtained as from Stuart’s (1960) 
approach. The distortion of the fundamental as a function of y, however, requires 
introduction of additional eigenfunctions and coefficients. Instead of introducing 
higher-order terms, this technique provides an expanding coupled system of ‘ amp- 
litude equations ’ for the coefficients. 

A well-defined amplitude and an alternative formula for A, similar to (2.42) had 
already been used by l toh (1974) for spatially growing disturbances. However, the 
consequences for the formulation of a rational expansion procedure were concealed 
by the low order of truncation and not pursued any further. I n  a more recent analysis 
of formal expansion procedures, Itoh (19774 raised serious objections on the grounds 
that ‘the asymptotic theory with the disturbance amplitude as the small parameter 
turns out not to provide an estimate of finite equilibrium amplitudes ’ and accordingly 
misses one of its major goals. However, this conclusion from his equation (3.5) is 
unjustified. l toh observes that for a, =k 0 the ratio A, /€  (his la$O)l) tends to infinity 
as e + 0 in contradiction to  his assumption that A,/€  = O(1). This is fully consistent 
with the fact that the equilibrium amplitude A ,  cannot be zero except at a bifurcation 
point, a, = 0, and fails to prove his statement. 

Itoh ( 1 9 7 7 ~ )  suggested an asymptotic theory for small disturbances that rests on 
Eckhaus’ eigenfunction expansions for all Fourier components and estimates 
analogous to (2.20). He retained only the most important terms and obtained the 
first Landau constant by considering trajectories in phase space. These considerations 
led him to cancel the terms multiplied by a, in the equations for mean flow and 
harmonics, resulting in a set of equations previously used by Ellingsen et ccl. (1970). 
Itoh did not explicitly restrict his formulation to equilibrium states, but we will show 
in $4 that his equations are identical with the low-order equations of a special method 
of false problems. These methods provide physical solutions only for equilibrium 
states, but non-physical solutions for A += A,. 

Eagles (1971) apparently made the only successful attempt to include the second 
Landau constant a2 in his analysis of finite-amplitude Taylor vortices. He achieved 
by rational arguments an additional condition similar to (2.27) for m = 1 which 
uniquely determines a2 and incorporates the growth of the disturbance into the 
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amplitude equation. Since the implications on the determination of the constants for 
a, > 0 were not revealed by his arguments, he calculated the Landau constants from 
the orthogonality condition. Hence the results are asymptotically valid as a,, -P 0, but 
subject to reservations a t  supercritical Reynolds numbers with values of a, greater 
than unity. 

4. Methods of false problems 
A method of false problems was first suggested by Reynolds & Potter (1967 b)  for 

a direct attack on equilibrium states in plane Poiseuille flow. A rational extension 
of this method was obtained by Herbert (1978b, 1980) with a modified amplitude 
definition analogous to (2.16) and (2.18). Without particularly advocating the use of 
these methods, we generalize in the following the method of Reynolds & Potter into 
a class of basically equivalent formulations, which are distinguished by their ranges 
of validity and convergence. 

For equilibrium states, the amplitude A ,  does not change with time, and therefore 
the nonlinear amplification rate vanishes: a(A,) = 0. According to (2.24) we obtain 

co 

- a  = 2 amAZm = 0 for A = A , .  (4.1) 
1 dA 

A dt  m=o 

Applying this to the series (2.23) for q5%(y, t ) ,  i t  is easy to see that the term a(M,  q5,)lat 
in (2.21) vanishes, and (2.25) can be replaced by 

with Fnm(y) as defined in (2.256). The boundary conditions (2.26) and the conditions 
(2.27) remain unchanged. We retain for convenience the notation of 92, although the 
functions #nm, Fnm and constants Am in (4.2) will not be identical with those in (2.25) 
except for 1 < 2. Obviously, the results from solving (4.2) provide a solution of the 
physical problem only if A = A ,  and the relation (4.1) is satisfied. For A + A,  we 
obtain solutions of physically meaningless ‘false problems ’, which are to be considered 
as a formal means for constructing the equilibrium solution. 

As before, the set of equations (4.2) is solved in the sequence of ascending values 
of 1 = n+2m. The results for 1 < 2 agree with those of 92. However, there are 
essential changes in the various types of equations for n = 0, n = 1 and n > 1. For the 
mean-flow distortions uOm, m > 0, we obtain instead of (2.31) 

uim =Gem, uOm = O  a t  y = f l .  (4.3) 

These equations admit no eigensolutions of the associated homogeneous problems and 
provide a unique solution for arbitrary values of a,. Thus the method of Reynolds 
& Potter is not invalidated by free mean-flow modes. Therefore it is not only valid 
in the unstable but also in the stable domain, if no eigensolutions of the harmonic 
equations occur. 

For the distortions #lm of the fundamental, we obtain from (4.2) with n = 1 
throughout equations of the type (2.36), with the associated homogeneous problem 
solvable. Hence for arbitrary R, a and related a, the Landau constants A,, m > 0, 
are determined by the orthogonality condition 

1 m-1 

11=1 
(4.4) A m =-- 6, &Hlmdy, f i l m  = A p M l # , m - p + $ l m .  
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The functions $lm are uniquely determined owing to the conditions (2.27). For n > 1 ,  
the harmonic equations provide unique solutions q5nm, if nh, is neither identical nor 
very close to one of the eigenvalues of the Orr-Sommerfeld problem for R, na. 
Otherwise the problem would be singular or ill-conditioned. As already mentioned 
in $2.3, an invalidation of the expansion in a single amplitude by harmonic resonance 
is unlikely in the unstable domain, but may well occur in the stable domain. An 
example for this situation has been given by Itoh (1977 b)  in his study on pipe flow. 
We suggest that this problem can be overcome by choice of another method of false 
problems from an infinite variety of such methods. 

Writing (2.21) with aq5,/at = 0 in the form 

{Ln- (na-inw) M,) $, = F,, (4.5) 

and adding arbitrary multiples of the identity a = 0 in the parentheses, leads to the 
more-general equations 

{Ln-(qna--inu)Mn) $n = Fn (4.6) 

for equilibrium states. This results in the equations 

for the q5nm, There are some restrictions on the choice of the numbers qn. I n  order 
to be compatible with the linear problem (2.21), we must set q1 = 1 .  This guarantees 
a t  the same time the occurrence of A,  in the right-hand side of (4.7) for n = 1 ,  m > 0. 
In order to avoid eigensolutions of the mean-flow equations, qoao 2 0 must be 
satisfied. The choice qo = 0 avoids invalidation by mean-flow resonance for arbitrary 
a, and hence for arbitrary R, a. For flows without a neutral curve and a, < 0 
throughout, q, < 0 would be another appropriate choice. With q, = n we obtain the 
straightforward extension of the method of Reynolds & Potter, whereas the method 
suggested by Itoh ( 1 9 7 7 ~ )  for n < 2 is obtained by setting qo = q2 = 0. With q ,  > 0, 
n > 1 ,  the danger of harmonic resonance persists for a, < 0. On the other hand, with 
q, < 0, n > 1 ,  this danger is completely removed only for subcritical Reynolds 
numbers and hence for flows without a neutral curve. For supercritical Reynolds 
numbers R and small wavenumbers a < a,(R), harmonic resonance may occur with 
q, a, > 0 if a, < na < a2 for some n > 1 .  Therefore q, = 0 for n > 1 appears as the 
most-appropriate choice, albeit not mandatory. 

The choice of a special set of q,, n #= 1 ,  is equivalent to  a rearrangement of the 
terms of the infinite series introduced into (4.6). I n  fact, the change of the multiple 
of a = 0 is equivalent with replacing some multiple of a, by a multiple of the 

higher-order terms - a,  AZm. Obviously, these manipulations require conver- 

gence of the series for some range of the amplitude A .  We have as yet no criterion 
for specifying the arrangement with fastest convergence or largest convergence 
domain. However, the results should agree a t  sufficiently high approximation if these 
methods are used inside their respective convergence domain. This aspect has been 
clearly pointed out by Davey (1978) in his comparison of Reynolds & Potter’s method 
(qz = 2) with Itoh’s method (q2 = 0) for pipe flow. I n  our view, Davey’s results for 
different values of his parameter h (which corresponds to our q2 = 2( 1 - A ) )  are all 
equivalent, but indicate that judicious results require higher-order terms to be taken 
into account. This could also contribute to estimates on the convergence domain for 
different sets of qn, n > 1. The convergence problem for the methods of false problems 

00 

m-1 



Perturbation methods in nonlinear stability theory 185 

is in practice more serious than for the method of $2. Whereas A( t )  can be restricted 
to small values within the convergence domain, the equilibrium amplitude A ,  (if it  
exists) at given R, u has a definite value, which may be outside the radius of 
convergence. 

In  spite of this convergence problem, the methods of false problems are of some 
advantage. They are formally applicable for arbitrary R, a and all values of a,. They 
are also computationally simpler than the method of $2, since the differential operator 
in (4.7) is independent of the index m of q5nm. Moreover, they provide as yet the only 
means for attacking possible equilibrium states in flows without a neutral curve. The 
objections of Rosenblat & Davis (1979) derived from their study of model problems 
that bifurcate at infinite Reynolds number and at an eigenvalue of infinite multiplicity 
may not fully apply to using methods of false problems with single eigenvalues at 
finite Reynolds numbers. However, the choice of an appropriate fundamental mode 
is not obvious. Moreover, results can be only considered as conclusive if the series 
are evidently used inside their radii of convergence. For studies on equilibrium states 
in flows with a neutral curve, we suggest the application of parameter expansions 
as discussed in $1. These parameter expansions are superior to the methods of false 
problems in that they provide a t  once the equilibrium solutions in the full convergence 
domain. 
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